Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature

نویسندگان

  • T. Chai
  • R. R. Draxler
چکیده

Both the root mean square error (RMSE) and the mean absolute error (MAE) are regularly employed in model evaluation studies. Willmott and Matsuura (2005) have suggested that the RMSE is not a good indicator of average model performance and might be a misleading indicator of average error, and thus the MAE would be a better metric for that purpose. While some concerns over using RMSE raised by Willmott and Matsuura (2005) and Willmott et al. (2009) are valid, the proposed avoidance of RMSE in favor of MAE is not the solution. Citing the aforementioned papers, many researchers chose MAE over RMSE to present their model evaluation statistics when presenting or adding the RMSE measures could be more beneficial. In this technical note, we demonstrate that the RMSE is not ambiguous in its meaning, contrary to what was claimed by Willmott et al. (2009). The RMSE is more appropriate to represent model performance than the MAE when the error distribution is expected to be Gaussian. In addition, we show that the RMSE satisfies the triangle inequality requirement for a distance metric, whereas Willmott et al. (2009) indicated that the sums-ofsquares-based statistics do not satisfy this rule. In the end, we discussed some circumstances where using the RMSE will be more beneficial. However, we do not contend that the RMSE is superior over the MAE. Instead, a combination of metrics, including but certainly not limited to RMSEs and MAEs, are often required to assess model performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Hybrid Neural Network Model for Quality Evaluation of Object Oriented Software Modules

–The aim of this paper is to evaluate the quality of object oriented modules. In this work neural network approach is used along with PSO (particle swarm optimization) to find out fault prone components of software. The evaluation measures used are Accuracy, MAE (Mean absolute error), RMSE (Root mean square error) and the results are calculated on different iterations. The Accuracy, MAE, RMSE i...

متن کامل

On the use of dimensioned measures of error to evaluate the performance of spatial interpolators

Spatial cross-validation and average-error statistics are examined with respect to their abilities to evaluate alternate spatial interpolation methods. A simple crossvalidation methodology is described, and the relative abilities of three, dimensioned error statistics—the root-mean-square error (RMSE), the mean absolute error (MAE), and the mean bias error (MBE)—to describe average interpolator...

متن کامل

Robustness of the Digital Image Watermarking Techniques against Brightness and Rotation Attack

The recent advent in the field of multimedia proposed a many facilities in transport, transmission and manipulation of data. Along with this advancement of facilities there are larger threats in authentication of data, its licensed use and protection against illegal use of data. A lot of digital image watermarking techniques have been designed and implemented to stop the illegal use of the digi...

متن کامل

A Hierarchical Approach Using Machine Learning Methods in Solar Photovoltaic Energy Production Forecasting

We evaluate and compare two common methods, artificial neural networks (ANN) and support vector regression (SVR), for predicting energy productions from a solar photovoltaic (PV) system in Florida 15 min, 1 h and 24 h ahead of time. A hierarchical approach is proposed based on the machine learning algorithms tested. The production data used in this work corresponds to 15 min averaged power meas...

متن کامل

Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran)

The main objective of this research is to investigate the potential combination of Sentinel-2A and ALOS-2 PALSAR-2 (Advanced Land Observing Satellite -2 Phased Array type L-band Synthetic Aperture Radar-2) imagery for improving the accuracy of the Aboveground Biomass (AGB) measurement. According to the current literature, this kind of investigation has rarely been conducted. The Hyrcanian fores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014